
z/OS Introduction and Workshop

Job Control Language (JCL)



2

Unit objectives

After completing this unit, you should be able to:

● Explain the purpose of JCL 

● Recognize JCL Statements & Fields

● List the most significant JCL reserved words

● Explain the JCL relationship to program file names

● Explain DD Operation and I/O Device Independence

● Find sources of information to advance JCL skill level



3

“In the beginning..”

Mainframes prior to S/360 were designed for scientific application number crunching.

The original S/360 hardware was designed from the ground up to meet the needs of 
business where data throughput capability was greater than the speed of number 
crunching.

The original OS/360 needed to work with many newly planned Input and Output, I/
O, devices, aka “peripherals”, to handle data throughput.

Business applications needed to be independent of any peripheral I/O device.

The S/360 and OS/360 design required device-independent I/O methods.



4

Fred Brooks managed development of System 360 
which evolved into today's mainframe

Fred Brooks jokes about JCL saying, 
– “I always tell my students OS/360 Job Control 

Language is the worst programming language 
ever designed anywhere by anybody for any 
purpose and it was done under my management.”



5

OS/360 JCL, “the Worst Language”
Done under my management “Fred Brooks”

● One job language for all programming languages

● Like Assembler language, rather than PL/I, etc.

● But not exactly like: card-column dependent

● Too few verbs

● Declarations do verbish things, via parameters

● Awkward branching

● No clean iteration

● No clean subroutine call

Basic problem was pedestrian vision
●

● We did not see it as a schedule-time programming language, but as a “few control cards”
It was not designed, it just grew as needs appeared.



6

“The Purpose of JCL”

JCL provided for the requirement of business applications to be 
independent of the I/O devices

I/O Devices

Operating System



7

What made JCL the “worst” language?
   

The L in JCL

The idea of “one job language for all programming languages” was a genius idea

JCL is best thought of as a single mechanism to execute all programming languages



8

Sequential Stream of Statements
Job Control Language (JCL) is a sequential collection of 80 character records 
beginning with // which the operating system reads and interprets

JCL is used to 
• Assign name and authority level
• Assign resources (programs, data, etc.) and services needed from the 

operating system to process a task

JCL can be viewed as a list of statements to be ‘submitted’ for background 
(batch) processing or ‘started’ for foreground (started task) processing



9

JCL Statement Fields

8.16 "

//NAME   OPERATION   PARAMETER                                            SEQ

80 Bytes

Parameter – Positional and Keyword
details for the operation ** 

Operation – Type of statement
Most common are EXEC and DD

Name – Identifies the statement so that other statements and system can refer to it.  
8 bytes or less

Identifier starts in column 1
  //   (followed by name and/or operation)
  /*   (delimiter – end of data)
  //*  (comment)
  //   (followed by all blanks – null..end of job)

Ignored (73-80)
Sequence numbers

** original JCL manual referred to 
PARAMETER field as OPERAND field



10

JCL Execute Program Statement

//MYSTEP   EXEC   PGM=                     
Parameter named program for the execute operation

Operation is to execute

Name is a user selected “STEPNAME”

STEPNAME label identifies a specific EXEC statement



11

JCL Execute Program Statement

//MYSTEP   EXEC   PROC=                     
Parameter to exec a named JCL Procedure

Operation is to execute

Name is a user selected “STEPNAME”

PROC STEPNAME label identifies a specific EXEC statement



12

Most Significant JCL Reserved Words

//JOBNAME JOB
//STEPNAME EXEC
//DDNAME DD
//* … this is a comment statement
/* … this indicates end of data
// … this indicates end for JCL



13

JCL Data Definition (DD) 

//DDNAME   DD   DISP=SHR,DSNAME=           

Parameters describe the input or output resource

Operation is Data Definition

Name must match spelling of a program file name

Each ddname must be unique within EXEC stepname



14

JCL Data Definition (DD) 

//DDNAME   DD   parameter / operand field  
Magic happens here

Redirection magic from 1964 designed into OS/360

Allocation of system managed resources

   Logical                                               Physical



15

//STEP1   EXEC   PGM=MYPGM1
//PGMI  DD        DSN=MY.INPUT.DATA,DISP=SHR
//PGMO DD        DSN=MY.OUTPUT.DATA,DISP=SHR
//*****
//*  End STEP1 execution and Begin STEP2 execution
//*****
//STEP2  EXEC   PGM=SYSPGM1
//SYSI DD        DSN=SYS.INPUT.DATA,DISP=SHR
//SYSO     DD        DSN=SYS.OUTPUT.DATA,DISP=SHR         

JCL Statement Stream



16

A JOB is a collection of related job STEPS - identified by a JOB statement.

When JCL is submitted using submit command, the JCL needs a JOB statement

JOB statement can be coded or system will prompt to generate a JOB statement



17

JCL DD Concatentation

DD statement with a blank DDNAME is owned by previous DDNAME
MYPGM1 reads all 3 data sets associated with DDNAME PGMI
”Concatentation” of DDNAMEs

//STEP1   EXEC   PGM=MYPGM1
//PGMI  DD  DSN=MY.INPUT.DATA,DISP=SHR
// DD  DSN=YOUR.DATA,DISP=SHR
// DD  DSN=SYS.DATA,DISP=SHR
//PGMO    DD  DSN=MY.OUTPUT.DATA,DISP=SHR



18

//STEP1   EXEC   PGM=MYPGM1
//PGMI  DD  DSN=MY.INPUT.DATA,
//   DISP=SHR
//PGMO    DD  DSN=MY.OUTPUT.DATA,
//    DISP=SHR

Continuation of JCL operation statement is a comma followed by a space, 
then the next line begins with // - one space followed by additional parameters 
for the JCL operation

JCL Continuation



Computer code that tells the operating system what to do.
 
Job Control are the best words describing JCL.
  
The word "Language" in JCL could easily be replaced by 
"Syntax" or "Commands" or "Statements".                   
                                                          
JCL tells the computer what program to execute.           
                                                          
JCL provides a mechanism for the program to read input and 
write output to requested physical resources. 

JCL, Job Control Language



JCL

JES
z/OS

Program

Data

JES
spool

Printer

1

36
4

5

2

7

1)  JCL submit
2)  JCL requests program
3)  Program loaded 
4)  JCL allocates resources needed by program
5)  Resources provided to program
6)  Program writes output to JES Spool
7)  Output to printer as requested

Job Control Language



z/OS
JES
TSO

SDSFJES
spool

1

1)  TSO logon using SDSF panels to view JES spool output
2)  JES spool output displayed on screen

View JCL job output written to JES spool

2



z/OS
JES
TSO
ISPF

Data Sets
Unix files

1

1)  TSO logon using ISPF panels to view program output on disk
2)  Data displayed on screen

View JCL job output written to: 
MVS Data Sets 
Unix files

2



z/OS written application programs include internal file names  
which are opened for reading and writing during execution.     
                                                               
The program hard coded file names are only names that are not  
associated with any physical resources.                        
                                                               
JCL associates the program file name with physical resources   
such has disk data set names or unix file names.               
                                                               
JCL is used to process programs in the background (aka 'batch')
and to process programs in the foreground (aka 'started task').

JCL submit will result in batch processing of one or more programs.  

JCL start will result in foreground processing of processing program. 

JCL (Job Control Language)



Job Control Language (JCL) instructs z/OS as a result of "submit” or "start “ command.         
                                          
                                                                      
JCL is easily identified by // in column 1 and 2.                     
                                                                      
JCL is uppercase unless text is enclosed in quote marks such as unix file names.                  
                                 
                                                                      
Every batch JCL job must contain:                                     
                                                                      
JOB    statement                                                        
EXEC statement                                                       
                                                                      
JOB statement marks the beginning of a batch job and assigns a name to the job.

JCL started tasks do not require a JOB statement
                                                                      
EXEC (execute) statement marks the beginning of a job step, assigns a name to the step, 
and identifies the program or procedure to be executed in the step.

Every batch job and started task has at least one EXEC statement. 

JCL syntax fundamentals and execution



JCL – Job Control Language

Job Control Language (JCL) is a sequential collection of 80 character 
records beginning with // which the operating system reads and interprets

JCL is used to 
• Assign name and authority level
• Assign resources (programs, data, etc.) and services needed from the 

operating system to process a task

JCL can be viewed as a list of statements to be ‘submitted’ for background 
(batch) processing or ‘started’ for foreground (started task) processing



Minimum JCL batch JOB example:

//MYJOB  JOB                                 
//              EXEC PGM=IEFBR14                    
                                             
JCL batch job example with stepname of STEP1:
                                             
//MYJOB  JOB                                 
//STEP1  EXEC PGM=IEFBR14                    
                                             
JCL batch job example with multiple steps:   
                                             
//MYJOB  JOB                                 
//STEP1  EXEC PGM=IEFBR14                    
//STEP2  EXEC PGM=IEFBR14                    
//STEP3  EXEC PGM=IEFBR14 



//MYJOB JOB 1 
//             EXEC PGM=IEBR14

JES Reader

z/OS

IEFBR14

JES
spool

1

34

2

1)  JCL submit
2)  JCL requests program
3)  Program loaded 
4)  Output written to JES spool

Job Control Language



JCL DD statements
In addition to the JOB and EXEC statements, jobs may contain one or 
more DD (Data Definition) statements used to identify and characterize 
the program input and output.              
                                                            
Example:                                                                                                       
 
//MYJOB JOB
//STEP EXEC PGM=SORT
//SORTIN DD parameters
//SORTOUT DD parameters 
//SYSIN DD parameters 
//SYSOUT DD parameters

JCL keyword DD is preceded by a 'DD name'.
                                                            
The above JCL example has 4 'DD names',
 SORTIN
 SORTOUT 
 SYSIN
 SYSOUT



//MYJOB JOB
//STEP EXEC PGM=SORT
//SORTIN DD parameters
//SORTOUT DD parameters
//SYSOUT DD SYSOUT=*

JES Reader

z/OS

Program

Data

JES
spool

1

36
4

5

2

1)  JCL submit
2)  JCL requests program
3)  Program loaded 
4)  JCL  //SORTIN     DD 
5)  JCL  //SORTOUT DD
6)  JCL  //SYSOUT    DD SYSOUT=*

JCL DD statements
program input
program output



OPEN FILE=XYZ
READ FILE=XYZ
…..
CLOSE FILE=XYZ

//STEP1  EXEC PGM=PAYROLL
//XYZ       DD     DSN=DIV1.PAYROLL

PAYROLL (program)

DIV1.PAYROLL

JCL DATA SET

JCL is used to connect program file name to a z/OS physical resource such as a data set 
name, unix file name, JES spool, printer, network device, etc.

//STEP1 EXEC PGM=PAYROLL results in open file=xyz
//XYZ DD DSN=DIV1.PAYROLL is xyz content read by the program

DD is abbreviation for Data Definition
XYZ in this example is a program file name
XYZ in this example is also known as the JCL DDNAME

JCL Referenced DDNAME



OPEN FILE=XYZ
READ FILE=XYZ
…..
CLOSE FILE=XYZ

//STEP1  EXEC PGM=PAYROLL
//XYZ       DD     DSN=CORP.PAYROLL

PAYROLL (program)

CORP.PAYROLL

JCL DATA SET

JCL enables ability for same program to read a different z/OS physical resource 
without changing the program source code

JCL Referenced DDNAME



JCL DD statements

DD 'parameters' reference z/OS controlled resources such as        
unix file name, data set name and data set status     
                                                                   
Examples:
                                                          
  PATH=‘/unixpath/filename’             <<<< unix file name reference
     
  DSN=DATA.SET.NAME <<<< data set name reference
      
  DISP=(start,end,abnormal_end) <<<< disposition status of data set
                                                                   
  



JCL DD DISP=values   (resource disposition)

 DISP=(      start         ,end                  ,abnormal_end ) 
[NEW] [,DELETE ]   [,DELETE ]

              [OLD] [,KEEP ] [,KEEP ]  
     [SHR] [,PASS ] [,PASS ]
     [MOD] [,CATLG ] [,CATLG ]

               [,       ] [,UNCATLG] [,UNCATLG]
[, ]

OLD  resource exists and exclusive use is requested
SHR  resource exists and may be shared with other requestors
NEW resource must be created, a new allocation
MOD data set exists and records to be added at the end, or new data set
 
DELETE delete resource when program completes
KEEP keep resource when program completes
CATLG update catalog system to locate data set in the future
UNCATLG update catalog system remove location of resource
PASS pass the resource to a subsequent JCL step



JCL DD (Data Definition) statements

The program opens DD names as input, output, or both. 

The program has an internal file name that will match the JCL DD 
name.  
The association allows different data set names or unix file names   
to be used by the same program without changing the internal     
program file name.

When JCL batch job executes, the system writes output to the system 
controlled JES output queue, data sets and/or unix files as directed by 
the JCL DD statements



Fundamental JCL statements

The 3 basic JCL statements:

1) JOB statement who wants to process work

2) EXEC statement what program or procedure will be used

3) DD statement what are the program inputs and outputs

Other useful JCL statements:
 PROC and PEND  statement execute a JCL predefined procedure
 INCLUDE statement include predefined JCL statements
 IF – THEN – ELSE – ENDIF provides JCL conditional processing



JCL – example 

//MYJOB JOB 1

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=ZIBM000.JCL(AREACODE)

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

  SORT FIELDS=(1,3,CH,A)

/*

MYJOB is the jobname             
MYSORT is the stepname
SORTIN is program input
SORTOUT is program output
SYSOUT is system output messages 
SYSIN is control or data program input



JCL - procedures (PROC to PEND)

//MYJOB JOB 1

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=&SORTDSN

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//          PEND



JCL - procedures (continued)

//MYJOB     JOB 1
//*------------------------------------------------------------------------------------------------*
//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=&SORTDSN
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//                PEND
//*------------------------------------------------------------------------------------------------*
//STEP1 EXEC MYPROC,SORTDSN=ZIBM000.JCL(AREACODE)
//SYSIN DD *
  SORT FIELDS=(1,3,CH,A)



JCL - procedures – PROC statement override

//MYJOB JOB 1
//*------------------------------------------------------------------------------------------------------------*
//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=&SORTDSN
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//          PEND
//*--------------------------------------------------------------------------------------------------------------*
//STEP1     EXEC MYPROC,SORTDSN=IBMUSER.AREA.CODES
//MYSORT.SORTOUT DD DSN=IBMUSER.MYSORT.OUTPUT,DISP=(NEW,CATLG),
//               SPACE=(CYL,(1,1)),UNIT=SYSDA,VOL=SER=SHARED
//SYSIN     DD *
  SORT FIELDS=(1,3,CH,A)



List of Other Commonly Used JCL Operations

//name  IF (condition) THEN 
//name  ELSE 
//name  ENDIF

//name  PROC
//           PEND

//name  SET

//name  JCLLIB

//name  INCLUDE

//name  COMMAND

//name  OUTPUT

//name  XMIT

More exist
JCL grew as needs appeared



41

Conditional Processing

Old way – will always be available (promise of upward compatibility)

COND=

//STEP1  EXEC  PGM=CINDY
          .
          .

//STEP2  EXEC  PGM=NEXT,COND=(4,EQ,STEP1)

Test return codes from previous JCL job steps and determine 
whether to bypass or execute this JCL job step

Complex conditional expressions involving multiple previous JCL job steps are possible

Very flexible – but lacked user friendliness



42

Conditional Processing

Complex conditional expressions involving multiple previous JCL job steps are possible

Very flexible – user friendly intent

//START    EXEC PGM=MYPGM1
//    IF RC=0 THEN
//SUCCESS  EXEC PGM=MYPGM2
//    ELSE
//FAILURE     EXEC PGM=MYPGM3
//    ENDIF 

New way – IF/THEN/ELSE/ENDIF JCL Operations 
MYPGM1

RC = 0

MYPGM3

MYPGM2YES

NO



© 2009 IBM Corporation

//  IF condition THEN / ELSE / ENDIF

Specifies conditional execution of job steps within a job.



© 2009 IBM Corporation

Using system symbols and JCL symbols

Dynamic & Static Symbols 

&SYSUID.
&DAY.    
&HHMMSS. 
&HR.     
&JDAY.    
&JOBNAME.

&LDAY.   
&LHHMMSS.
&LHR.    
&LJDAY.  
&LMIN.   
&LMON.   
&LSEC.   
&LWDAY.  
&LYR2.   
&LYR4.   
&LYYMMDD.

&MIN.    
&MON.    
&SEC.    
&WDAY.   
&YR2.    
&YR4.    
&YYMMDD. 



© 2009 IBM Corporation

Using system symbols and JCL symbols

** JES2 JOBCLASS SYSSYM=ALLOW

//TEST JOB 1,NOTIFY=&SYSUID                                         
IEFC653I SUBSTITUTION JCL - 1,NOTIFY=IBMUSER                                    
//S1   EXEC PGM=IEFBR14                                                         
//D1   DD   DSN=&SYSUID..J&JOBNAME..Y&YYMMDD,DISP=(,CATLG),            
//          LIKE=&SYSUID..JCL                                                   
IEFC653I SUBSTITUTION JCL – 
DSN=IBMUSER.JJES2.Y180803,DISP=(,CATLG),LIKE=IBMUSER.JCL

JESJCL
Output

Using System Symbols and JCL Symbols Documentation

System symbols and JCL symbols are character strings that represent variable information in JCL.
System symbols allow you to modify JCL statements in a job easily.
A symbol-defining string is limited to eight characters, not including the identifying ampersand (&) character.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab600/symparm.htm


46

//  SET

Defines and assigns initial values to symbolic parameters used 
when processing JCL statements. 

Changes or nullifies the values assigned to symbolic parameters.

Using system symbols and JCL symbols



47

//S1 EXEC PGM=MYPGM
//MYDATA  DD *
ABCDEF
123456
/*

ABCDEF
123456

MYPGM

read mydata

JES Spool

JCL  DD *  … JES Spool used to store data imbedded in JCL stream

Variables in the 
//name DD * 
data stream
/* 

is possible with JCL DD SYMBOLS parameter 

JES Enables Very Useful JCL Features



48

//S1 EXEC PGM=MYPGM
//MYDATA  DD *,SYMBOLS=CNVTSYS
&SYSUID
123456
/*

Z00001
123456

MYPGM

read mydata

JES Spool

JCL  DD *,SYMBOLS=    enables variable conversion

where &SYSUID = Z00001

SYMBOLS=EXECSYS
JCLONLY and system system symbols

SYMBOLS=CNVTSYS
EXECSYS and substitute variables on the system where conversion occurred

SYMBOLS=JCLONLY
JCL symbols and JES symbols found in the in-stream data set are replaced 
with their values

JES Enables Very Useful JCL Features



49

Relationship between JCL and JES

● JES reads and interprets JCL

● JES stores JCL and in-stream data in a JES Spool

● JES collaborates with z/OS to allocate required resources

● JES collects and stores JCL jobname output

● JES itself is JCL ???

Q: So, what reads and interprets the JES JCL Procedure
A: The Master Scheduler

History Lesson – In the beginning JES did not exist

Understanding the master scheduler job control language

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieae200/mstschd.htm


© 2009 IBM Corporation

View and Understand JCL Job Output Controlled by JES2

JES2 Dynamically Allocates DDNAMEs for each JCL JOBNAME (JOB, STC, TSU)

More about the content in the dynamically allocated DDNAMEs a bit later in this session

JESJCLIN
JCL submitted

JESMSGLG
System messages for this job

JESJCL 
All job control statements in the input stream

JESYSMSG
JES and operator messages about the job's processing 

allocation of devices and volumes
execution and termination of job steps and the job
disposition of data sets



51

JCL JOB Output Listing

S … select all the JCL JOB output

? .... list all the JCL JOB DDNAMEs



52

JCL JOB Dynamically Allocated DDNAMEs



53

JESJCLIN Output .. w/JCL error 



54

JESMSGLG Output .. w/JCL error (continued)



55

JESJCL Output .. w/JCL error (continued)



56

JESYSMSG Output .. w/JCL error (continued)



57

JCL JOB Output .. w/JCL error (continued)



58

JESJCLIN Output  (continued)

JCL error correction 



59

JESMSGLG Output (continued) 



60

JESJCL Output (continued)



61

JESYSMSG Output (continued)



62

JCL Procedures

//name  PROC
Marks the beginning of either

1. in-stream procedure
2.cataloged procedure

assigns values to parameters defined in the procedure

//name  PEND
Marks the end of either

1. in-stream procedure
2.cataloged procedure



63

JCL Procedures (In-Stream with parameter value substitution)

P is assigned as a PROC variable

P is assigned value IEFBR14

Observe lines 4 & 5
++ JCL In-Stream 
Procedure Expanded Statements



© 2009 IBM Corporation

++  …. DD statement that was not overridden and all other JCL statements, except 
the JCL comment statement. Each statement appears in the listing exactly as it 
appears in the procedure.

+/  …. DD statement that was overridden (preceded by the overriding DD statement)

++* ….Job control statement that is not a JCL comment statement but one that the 
system considers to contain only comments

++* …. JCL comment statement

JESJCL Output for In-Stream Procedures



65

JCL Procedures (Cataloged Procedure)

Observe lines 3, 4 & 5
XX JCL Cataloged Procedure Expanded Statements



© 2009 IBM Corporation

XX  …. DD statement that was not overridden and 
all other JCL statements,except the JCL comment 
statement. Each statement appears in the listing 
exactly as it appears in the procedure

X/ …. DD statement that was overridden 
(preceded by the overriding DD statement)

XX* … Job control statement that is not a JCL 
comment statement but one that the system 
considers to contain only comments

XX* …. JCL comment statement

JESJCL Output for Cataloged Procedures



67

//MYJOB JOB 1

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD   DSN=&SORTDSN,DISP=SHR

//SORTOUT DD   SYSOUT=*

//SYSOUT DD   SYSOUT=*

//          PEND

JCL Procedures (PROC to PEND)



© 2009 IBM Corporation

//MYJOB    JOB 1

//*------------------------------------------------------------------------------------------------*

//MYPROC PROC

//MYSORT EXEC PGM=SORT

//SORTIN DD DSN=&SORTDSN,DISP=SHR

//SORTOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//          PEND

//*------------------------------------------------------------------------------------------------*

//STEP1 EXEC MYPROC,SORTDSN=ZIBM000.JCL(AREACODE)
//SYSIN DD *

  SORT FIELDS=(1,3,CH,A)

JCL Procedures



© 2009 IBM Corporation

//MYJOB JOB 1
//*
//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DSN=&SORTDSN,DISP=SHR
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//                       PEND
//*
//STEP1     EXEC MYPROC,SORTDSN=IBMUSER.AREA.CODES
//MYSORT.SORTOUT DD DSN=IBMUSER.MYSORT.OUTPUT,
//        DISP=(NEW,CATLG),
//        SPACE=(CYL,(1,1)),
//        UNIT=SYSDA,VOL=SER=VPWRKA
//SYSIN     DD  *
  SORT FIELDS=(1,3,CH,A)

JCL Procedures – Statement Override
//STEPNAME.DDNAME   DD  ….



70

In-stream JCL Procedure w/Override (JESJCLIN)



71

In-stream JCL Procedure w/Override (JESMSGLG)



72

In-stream JCL Procedure w/Override (JESJCL)



73

Cataloged JCL Procedure (JESJCLIN)



74

Cataloged JCL Procedure (JESJCL)



75

A temporary data set is a data set that is created and deleted in the same job, 
and is identified by coding one of the following:

DSNAME=&&dsname
For a temporary data set

DSNAME=&&dsname(member)
For a member of a temporary PDS or PDSE

No DSNAME parameter
For a temporary data set to be named by the system

Temporary Data Sets

Create and Pass Temporary Data Set Between JCL STEPs



76

//name  SET

Defines and assigns values to symbolic parameters 
used when processing JCL statements.

//name  JCLLIB ORDER=(names of the libraries to be searched)

//SET1   SET LIB=MY.JCLLIB,D=MY.INPUT.DATA,M=AA
//*
//PRIVATE JCLLIB ORDER=(&LIB)
//*
//*   search for MYPROC first in MY.JCLLIB
//*
//COPY EXEC MYPROC        
//INDATA       DD      DSN=&D,DISP=SHR
//MOREJCL   INCLUDE MEMBER=&M

Miscellaneous JCL Operations



© 2009 IBM Corporation

//   JCLLIB 
//   INCLUDE

Identifies the libraries that the system will search for:
• Procedures named in EXEC statements
• INCLUDE groups



78

JOB Operation Parameters
TYPRUN=

SCAN    check JCL syntax
HOLD hold until command to release
JCLHOLD JES2 hold until command to release
COPY copy JCL to output without processing

NOTIFY=
&SYSUID any valid ID

TIME= modify default processing time

REGION= modify default processing memory
MEMLIMIT=

PAGES= modify default output volume
LINES=

EMAIL=

Many more



79

DD Operation DCB= parameter

Used to assign attributes to a resource such as a data set name
Logical Record Length
Record Format
Data Set Organization

DCB, Data Control Block, operands
LRECL=
RECFM=
DSORG=

Assembler Macro

LIKE= parameter exists for newly allocated data set names



© 2009 IBM Corporation

SMS, Storage Management Subsystem
SMS ACS Routine Impact on DD Operation

DSN=
MGMTCLAS=
STORCLAS=
DATACLAS=

SMS Enables Disk Storage Administrators to simplify JCL DD parameters

SMS Locally documented JCL procedures and policy

SMS ACS, Automatic Class Selection, routine parses and changes JCL
Routine discards user JCL DD operands and substitutes different JCL DD parameters

** interally generated DD operation defined physical resources
** what you code as a  DD operation and submit can be altered by SMS ACS routine



81

System Utilities & Old Tricks

JCL can be used to submit another JCL JOB
//RDR DD SYSOUT=(,INTRDR)

REXX can be used to build and submit JCL JOB

FTP can used to submit JCL from workstation, etc.
FTP can used to retrieve the JES output

SORT & ICETOOL powerful and flexible data sorting, filtering, and field manipulation
IKJEFT01 anything possible from interactive TSO can be processed using JCL
IDCAMS create, delete, rename, copy data for VSAM and non-VSAM
IEBCOPY copy PDS members
IEBGENER copy sequential data
IEBDG data generator
IEFBR14 dummy program useful for allocating and deleting data sets
BPXBATCH Unix utility to process Unix shell commands or programs using JCL
– many more learn the utilities - “don’t write programs when utility will do the job”



82



wikipedia.org



Unit summary
Having completed this unit, you should be able to:
•  Understand purpose of JCL

•  Understand JCL JOB, EXEC, and DD statements

•  Understand relationship of program file name to JCL DDNAME

•  Locate JCL professional manuals, documentation, and online help



85


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

